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Abstract
Aim: Leaf litter inputs from riparian vegetation and its decomposition play a key role 
in energy and nutrient transfer in many stream ecosystems. Instream leaf litter de-
composition is driven by both leaf traits and environmental conditions. Therefore, un-
derstanding and predicting leaf trait variation under current environmental changes 
and their putative interactive effects on stream food webs is a critical challenge. Most 
studies have focussed on the assumed higher interspecific leaf trait variability, with 
little research addressing an intraspecific perspective.
Location: Andalusia, Spain.
Methods: We assessed the relative effects of climate and soil conditions on the plas-
ticity of leaf traits of four common woody riparian species in permanent low-order 
Mediterranean streams across a wide aridity gradient. We used a space-for-time sub-
stitution approach to predict leaf trait changes and consequences for stream food 
webs in a future climate change scenario.
Results: Overall, we found that aridity had a major influence on leaf trait plasticity 
but with opposite patterns depending on plant functional type, although soil was the 
strongest predictor in some cases. Results indicated that leaf quality—linked to palat-
ability and decomposability—of Alnus glutinosa, Salix atrocinerea and Rubus ulmifolius 
(deciduous/semi-deciduous) will decrease with forecasted aridification, whereas the 
palatability of the evergreen Nerium oleander will increase. We observed higher trait 
plasticity than interspecific variation for leaf P, Ca and Mg concentrations and C:P 
ratio.
Main conclusions: Our findings suggest a decrease of intraspecific leaf quality in ri-
parian deciduous species with global warming in a relatively short term. In a longer 
term, this may merge with the forecasted dieback of deciduous species in riparian cor-
ridors of temperate climate zones. These changes have the potential to significantly 
impair ecosystem functioning of Mediterranean mountain streams currently under 
deciduous gallery forests.
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Aridification, deciduous, evergreen, instream decomposition, litter quality, soil, space-for-time 
substitution

www.wileyonlinelibrary.com/journal/ddi
mailto:﻿
https://orcid.org/0000-0002-5335-1766
http://creativecommons.org/licenses/by/4.0/
mailto:jrr812@ual.es
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fddi.13493&domain=pdf&date_stamp=2022-02-16


2  |    RUBIO-RÍOS et al.

1  |  INTRODUC TION

The warming of the Earth system is unequivocal (IPCC, 2021). 
Globally, precipitation is also predicted to increase in the long term 
(Hewitson et al., 2015). However, forecasts in the Mediterranean 
basin point to a precipitation decrease of around 34%, along with 
a temperature increase of ca. 5°C for the period 2000–2099 (Harris 
et al., 2013). As a result, this region will face a climate much drier 
and hotter than at present, especially during warm seasons (Giorgi 
& Lionello, 2008), with direct effects on hydrologic regimes (Nohara 
et al., 2006; Vicente-Serrano et al., 2014) and soil moisture (Manabe 
et al., 2004). These changes may alter the functioning and structure 
of plant communities (e.g. Carnicer et al., 2011; Trivedi et al., 2008; 
Vicente-Serrano et al., 2012).

Small streams flowing through forested areas can be especially 
susceptible to climate change-induced alterations in plant communi-
ties, owing to their high dependence on organic matter inputs from 
the riparian vegetation, i.e. leaf litter (Wallace et al., 2015). Instream 
decomposition of leaf litter is a crucial ecosystem process, involving 
the cycling of nutrients and fuelling stream secondary production 
(Marks, 2019). The rate at which leaf litter decomposes and is in-
corporated into food webs highly depends on its quality, which fun-
damentally depends on after-life persistent traits (Graça & Cressa, 
2010; Graça et al., 2001; Zhang et al., 2019). Thus, ecosystem func-
tioning can be significantly altered if leaf litter inputs to streams 
experience physical and chemical changes (e.g. Casas et al., 2013; 
del Campo et al., 2021; López-Rojo et al., 2019). These changes can 
be interspecific, e.g. resulting from the forecasted substitution of 
deciduous by evergreen species (Kominoski et al., 2013; Salinas 
et al., 2018) and/or the decline of key plant species populations 
(e.g. alder; Alonso et al., 2021; Rubio-Ríos et al., 2021). Moreover, 
given that leaf traits are highly responsive to environmental changes 
(Heilmeier, 2019; Soudzilovskaia et al., 2013), intraspecific changes 
may also occur, e.g. due to genetic variability (Crutsinger et al., 2014; 
LeRoy et al., 2012) or phenotypic plasticity (Graça & Poquet, 2014; 
Henn et al., 2018; Jung et al., 2014).

Such relationship between leaf traits and the environment has 
been a recurrent theme of the study (e.g. Ordoñez et al., 2009; Read 
et al., 2014; Reich & Oleksyn, 2004). However, although recent re-
sults indicate that intraspecific variation may represent up to ca. 
30% of total functional trait variability in plant communities (Albert 
et al., 2010; Siefert et al., 2015), most studies have focussed on the 
often assumed higher interspecific variability of many leaf traits (e.g. 
Hulshof & Swenson, 2010; Wright et al., 2004).

High rates of plasticity in leaf traits are expected in species dis-
tributed across ample environmental gradients (Cordell et al., 1998; 
Fajardo & Piper, 2011; Umaña & Swenson, 2019), as increases in 
niche breadth allow plants to respond to variation in climatic and 
other environmental conditions (Henn et al., 2018), whereas nearby 
individuals may share biotic and abiotic pressures and have close 
genetic relationships. Warming and reduced rainfall, i.e. increasing 
aridity, are usually reported to promote the production of thicker 
and smaller leaves (Wright et al., 2004)—in order to improve their 

water use efficiency and to increase their leaf life span—with low 
nutrient concentrations (Reich & Oleksyn, 2004). Such plasticity in 
important traits can, in turn, affect the palatability and decompos-
ability of leaves, i.e. their acceptability and easiness to be consumed, 
along environmental gradients (Boyero et al., 2017; Graça & Poquet, 
2014; Lecerf & Chauvet, 2008; LeRoy et al., 2007). Understanding 
how individual species traits, or their syndromes, are modulated by 
climatic or other environmental characteristics could allow us to re-
fine predictions of potential effects on stream ecosystem function-
ing, both in green (based on primary production) and brown (based 
on detritus) food webs, in the face of climate change (Kominoski 
et al., 2021).

Here, using a ‘space-for-time’ (SFT) substitution approach (Blois 
et al., 2013; Pickett, 1989), we investigated how climate change might 
affect leaf quality, focusing on after-life traits affecting leaf decom-
position. The SFT substitution approach is a useful tool to anticipate 
changes taking advantage of natural gradients (Fukami & Wardle, 
2005); in the present study, a natural aridity gradient represents the 
forecasted aridification of the Mediterranean basin (Seager et al., 
2014). We assessed plasticity in leaf traits of four common riparian 
species, with contrasting functional traits, in permanent low-order 
streams [Alnus glutinosa (L.) Gaertn., Salix atrocinerea Brot., Rubus 
ulmifolius Schott and Nerium oleander L.], extrapolating their possi-
ble variation in the forecasted climatic scenarios from that observed 
across a wide environmental gradient studied within a relatively 
small region. Using the same species along many areas differing in 
environmental conditions allowed us to control for species-specific 
traits, but not to assess the amount of trait variability due to genetic 
variability.

Given the high responsiveness of leaves to climate changes 
(Heilmeier, 2019; Soudzilovskaia et al., 2013) and the high water and 
nutrient availability in riparian soils of permanent streams (Naiman & 
Decamps, 1997), we hypothesize that (1) climate will exert a higher 
influence on leaf trait plasticity of the studied species compared 
to soil variables. We (2) expect a general trend of decreasing leaf 
quality—i.e. lower nutrient concentration, higher toughness—with 
the forecasted aridification (increasing temperature and decreasing 
precipitation) (Reich & Oleksyn, 2004). However, we also expect 
that the strength of the effects will vary among different species, 
as they belong to different functional groups (i.e. C allocation and/or 
N-fixing) and therefore have low similarity in their leaf traits (Salinas 
et al., 2018). Thus, we also hypothesize that (3) trait plasticity will be 
relatively low compared to interspecific variation.

2  |  MATERIAL S AND METHODS

2.1  |  Area of study and selected plant species

Our study was conducted during summer 2013 in the riverbanks of 
34 headwater streams with permanent flows distributed across nine 
natural protected areas (considered as pristine) located in Andalusia 
(south of the Iberian Peninsula), covering ca. 88,000  km2. These 
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locations represent a wide climatic gradient within the context of a 
Mediterranean-type climate and possess a considerable lithological 
and topographical heterogeneity (Figure 1). The present (mean an-
nual temperature range 10.8–17.4°C; mean annual precipitation range 
261–845 mm; Table S1) and the projected climatic gradient studied 
(by the end of the 21st century) covers from arid to humid conditions 
according to the Emberger's bioclimatic coefficient (Table 1, Figure 2). 
This embraces the forecasted aridification, i.e. warming (mean tem-
perature rise of 2–4°C) and reduction of precipitation (mean precipi-
tation decrease of 10–40%), for the Mediterranean region (Seager 
et al., 2014), as a consequence of climate change towards the year 
2100 (reviewed by Giorgi & Lionello, 2008).

We selected four abundant riparian plant species which repre-
sent different functional groups featuring different characteristics, 
including two deciduous riparian trees: black alder—Alnus glutinosa 
(an N-fixer), and grey willow, Salix atrocinerea; one semi-deciduous 
shrub: blackberry, Rubus ulmifolius; and one evergreen shrub: ole-
ander, Nerium oleander, also known as laurel rose. Leaves of these 
species collected (June-July 2013) from each sampling sites were 
present (Table 1) from robust, well-grown and totally unshaded 
plants distanced from the stream by a maximum of 6 m. Those leaves 
directly exposed to sun light and without herbivory or pathogen 
symptoms were selected (Cornelissen et al., 2003). In each stream 

and for each species, we collected 102  leaves from six individuals 
(17 leaves per individual) randomly distributed on both stream sides 
along a 100 m stream reach. Leaves were air-dried at room tempera-
ture (20–23°C) for one week and stored in darkness in paper bags 
until processed. At each stream, the cover of each species was esti-
mated using the Domin–Krajina scale of cover and abundance (Kent 
& Coker, 1992) in six plots (36 m2 each) randomly distributed in both 
stream sides—three plots per side arranged from the edge of the 
wetted channel—along a 100 m stream reach (Salinas et al., 2018).

2.2  |  Environmental variables

Thirty-two environmental variables (altitude, 20  climatic and 11 
edaphic; Table 1 and S1) were selected as potential predictors of leaf 
trait plasticity. Altitude was obtained in situ using a portable GPS. 
Historical (monthly average for the years 1970–2000) values of bio-
climatic variables (spatial resolution of 30  seconds, i.e. ~1 ×  1  km) 
recorded along the last period with available climatic data were ob-
tained from the WorldClim database (Table S1; version 2.1; www.
world​clim.org, Fick & Hijmans, 2017) using site location information 
(latitude and longitude). Future monthly values were estimated from 
the NCAR Community Model version 3 (2 ×  CO2  climate change 

F I G U R E  1  Map of the 34 sites of study located within Europe and over the mean annual temperature (a) and the annual precipitation (b) 
gradients

https://www.worldclim.org
https://www.worldclim.org
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scenario, CCM3) for the year 2100 (Govindasamy et al., 2003) and 
subsequently downscaled and matched to the WorldClim estimates 
of current climate at a resolution of 2.5 minutes (i.e. ~4.5 × 4.5 km). 
From these variables, the Emberger's bioclimatic coefficient (Q2) 
for each site was calculated following Condés and García-Robredo 
(2012) as 100P/((M2–m2)), where P is the annual rainfall in mm, M the 
average maximum of the warmest month, and m the average mini-
mum of the coldest month. To measure soil variables, we collected a 
sample consisting of six core samples of the top 20 cm of the river-
bank soil profile, obtained by a randomly stratified method from each 
stream side at a distance of approximately 3 m from the active chan-
nel. Samples from each site were mixed, air dried, sieved (2 mm) and 
stored in sealed polyethylene bags until analysed. Soil physical and 
chemical variables (Table S1) were measured as in Gil et al. (2004).

2.3  |  Leaf traits

We measured nine leaf traits that often correlate with leaf litter de-
composition rate (see Graça et al., 2015; Tonin et al., 2021) for each 
species: N, P, Ca, Mg, condensed tannins and lignin concentrations, 
C:N and C:P molar ratios and toughness. Before measurements, leaves 
were rehydrated by spraying with distilled water and stored for 12 h 
at 5°C. Leaf toughness, expressed in units of mass (g), was measured 
by performing distal and proximal punctures per individual leaf using 
a Texture Analyzer TA.XTPlus (Stable Micro Systems) equipped with 
a needle of 0.38 mm2 tip surface. Thereafter, leaves were oven dried 
(60°C, 72 h) and ground to fine powder (Mixer Mill RETSCH MM 200). 
Concentrations of C and N (% dry mass, DM) of leaves were deter-
mined using a mass spectrometer (EA-Thermo DELTA V Advantage, 
Fisher Scientific®) following standard procedures (Flindt et al., 2020). 
The concentration of P (% DM) was measured spectrophotometri-
cally after autoclave-assisted extraction (APHA 1998, Flindt et al., 
2020). Concentrations of Ca and Mg (% DM) were determined by in-
ductively coupled plasma mass spectrometry (ICP-MS, Perkin Elmer 
DRC II). Condensed tannins (mg Catechin Hydrate Equivalent per g 
of DM) were measured by the acid butanol assay (Gessner & Steiner, 
2020). Concentration of lignin (% DM) was estimated gravimetrically 
using the acid detergent method of Goering and Van Soest (1970).

2.4  |  Data analysis

To elucidate the relationships between species cover and envi-
ronmental variables, we ran a Canonical Correspondence Analysis 
(CCA; cca function of the ‘vegan’ package, Oksanen et al., 2019), 
after a forward selection (ordistep function of the ‘vegan’ package 
with 9999 permutations) of the most parsimonious subset of ex-
planatory variables (PPSeasonality, PWettestM, MaxT, MinT and soil 
pH). Significance of all testable fractions was assessed using permu-
tation tests. Environmental variables were transformed to improve 
the structure of the residuals using log or arcsin transformations for 
decimal and percentage values, respectively.Ba
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Differences in individual traits among species were assessed using 
one-way ANOVA and post hoc Tukey tests (anova and TukeyHSD 
functions of the ‘stats’ package). We performed Principal Component 
Analyses (PCAs; prcomp function in the ‘stats’ package) to examine 
patterns in leaf trait variability: one pooling the four species to exam-
ine interspecific variation vs. trait plasticity, and one for each species 
to extract the main gradients (2 first PCs) of trait plasticity (i.e. leaf 

quality). Previously, using Spearman rank correlations, leaf traits with 
high (>0.85) collinearity were removed (Figure S1). Seven traits were 
finally included in the PCA: N, P, Ca, Mg, condensed tannins, lignin 
and toughness. Log or arcsin transformations of variables were used 
when required in ANOVA and PCA analyses. The relative magnitude 
of interspecific variation vs. species plasticity for the overall pool of 
traits for each species was estimated as the proportion that each spe-
cies covered in each of the dimensions of the general PCA. Besides, 
to quantify the relative magnitude of interspecific variation vs. species 
plasticity for each leaf trait, we performed variance partitioning anal-
yses (varcomp function of the ‘ape’ package, Paradis & Schliep, 2019).

We carried out partial least squares regressions (PLS; plsr func-
tion in the ‘pls’ package, Mevik et al., 2020) to evaluate the relative 
importance of climate and soil as predictors of leaf trait plasticity 
(first two PCA axes). Preliminary PLS regressions for each environ-
mental matrix and plant species (Table S2) were used to reduce the 
number of variables by selecting those with the highest variable im-
portance in projection (VIP; VIP function in the ‘plsVarSel’ package, 
Mehmood et al., 2012). Those variables with VIP ≳1 were consid-
ered relevant (Andersen & Bro, 2010). Spearman rank correlation 
analyses were used to equalize the size of the two matrices of envi-
ronmental variables removing those variables with high collinearity 
within those with higher VIP values (Figure S2, Tables S3 and S4). 
A second PLS regression was performed for each species using the 
selected variables, and the influence of each group of environmental 
variables (climate and soil) and their combination (climate + soil) on 
leaf plasticity was assessed using the goodness of prediction (Q2) 
and the goodness of fit (R2(Y)) of models. A model was considered 
significant when Q2 > 0.097 (Friden et al., 1994).

TA B L E  2  Summary of univariate dependent variable PLS models fitted to the first two principal components of PCA (PC1 and 
PC2), summarizing leaf trait plasticity for each species, using three matrices (C, S and C+S) of selected (in preliminary PLS regressions) 
environmental variables as predictors

Functional type Plant species
Set of environmental 
predictors or combination

Dependent variable

PC1 PC2

N Q2 R2(Y) N Q2 R2(Y)

Deciduous N-fixer Alnus glutinosa Climate (C) 1 0.63 0.76 0 – –

Soil (S) 4 0.26 0.74 1 0.09 0.43

C+S 1 0.64 0.78 1 −0.02 0.37

Deciduous Salix atrocinerea Climate (C) 2 0.51 0.74 1 0.10 0.42

Soil (S) 1 0.23 0.47 2 0.71 0.91

C+S 1 0.36 0.59 4 0.58 0.92

Evergreen Nerium oleander Climate (C) 3 0.30 0.71 1 −0.02 0.46

Soil (S) 1 −0.01 0.42 2 0.15 0.60

C+S 6 0.70 0.98 1 0.13 0.54

Semi-deciduous Rubus ulmifolius Climate (C) 1 0.32 0.41 1 −0.05 0.09

Soil (S) 1 0.03 0.19 1 −0.02 0.11

C+S 1 0.26 0.40 2 0.06 0.32

Notes: The number of PLS dimensions with lowest cross validation error (N), goodness of prediction (Q2) and coefficient of determination of 
dependent variable (R2) are shown for each model. Significant models (Q2 > 0.097) are in bold.

F I G U R E  2  Present (open, 2000) and projected (closed, 2100) 
Emberger's bioclimatic coefficient values (Q2), estimated from 
the NCAR Community Model version 3 (CCM3) for the year 2100 
(Govindasamy et al., 2003), for each of the 34 streams studied. 
Note that higher Q2 values denote lower aridity
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In PLS regressions, all explanatory variables were scaled to unit 
variance (scale function) to give all variables the same relative im-
portance. Regressions were carried out separately for each species 
and the number of extracted components (latent variables) and 
the robustness of the resulting models were determined by leave-
one-out cross-validation (LOO). For each model, we determined 
the number of dimensions with the lowest cross-validation error. 
PLS regressions built with climatic variables, when statistically sig-
nificant (Q2 > 0.097; Table 2), were used to estimate the projected 
change of leaf quality under the forecasted climate change scenarios 
for 2100, using the predict function of the ‘stats’ package. Current 
and projected values of leaf quality (i.e. mean position over PC 1 
or PC 2 of separate PCAs for each species) were compared using 
t-tests for paired samples. Hedge's g effect size was estimated using 
the cohen.d function of the ‘effsize’ package (Torchiano, 2020). See 
Supporting Methods in Supplementary Material for further details 
of data analyses.

3  |  RESULTS

3.1  |  Environmental variables and species 
distribution

Overall, the four species covered a large gradient of climatic con-
ditions from semi-arid to humid bioclimatic types according to the 
Emberger's coefficient (Q2) (Table 1, Figure 2). The scenario for 
2100 developed by the NCAR Community Model version 3 (CCM3) 
(Govindasamy et al., 2003) forecasts a significant aridification in the 
studied region, greater in presently humid sites (Figure 2).

Distribution of each species was rather clearly separated by the 
environmental gradients established by the first two dimensions of 
the CCA (p <  .001; Figure 3a), which explained 91% of fitted con-
strained variation (53% of total variation). Soil pH was the most im-
portant variable explaining species distribution, given its significant 
and positive load (0.72) on CCA 1 (also loading - 0.60 on CCA 2). 
Moreover, minimum annual temperature was positively correlated 
(0.43) with CCA 1. The above variables essentially determined the 
separation of the acidophilic A. glutinosa (hereafter Alnus) from other 
species, particularly from N. oleander (hereafter Nerium), which can 
tolerate high pH soils and prefers lowland sites with mild winters 
(Figure 3a, b, d; Table S5). Precipitation seasonality and precipitation 
of the wettest month loaded significantly and positively (0.70 and 
0.53, respectively) on CCA 2. This dimension basically segregated S. 
atrocinerea (hereafter Salix), abundant at low-precipitation and neu-
tral to basic soil sites, from other species (Figure 3c; Table S5). Rubus 
ulmifolius (hereafter Rubus) showed its highest cover at sites with 
basic soils and/or mild winters, where deciduous tree species de-
veloping dense canopy cover (alder, willow or other) were absent or 
scarce (Figure 3e; Table S5). The studied species varied in the range 
of environmental conditions they occupied. Rubus was the most 
widely distributed species, occupying 100% and 92% of CCA1 and 
CCA2 gradients, respectively, followed by Nerium (80.1% of CCA1 

and 84.2% of CCA2), Alnus (45.5% of CCA1 and 78.5% of CCA2) 
and Salix with the most constricted distribution (44.6% of CCA1 and 
71.7% of CCA2) (Table 1, Tables S1 and S2; Figure 3).

3.2  |  Interspecific variation and species 
plasticity of leaf traits

Species differed significantly in all leaf traits measured (one-way 
ANOVAs, all p < .0001) (Figure 4, Table S6). Alnus showed the low-
est toughness and the highest N concentration, and consequently 
the lowest C:N ratio, being for these traits antithetical to Nerium, 
which in turn showed the highest Ca concentration and C:P ratio. 
Salix exhibited the highest P, tannins and lignin concentrations, and 
Rubus the highest Mg concentrations. The first two components of 
the PCA on leaf traits for the four pooled species explained 62.5% of 
the variation (Figure 5a): PC 1 represented a gradient of increasing 
nutrients (N and P) parallel to decreasing leaf toughness, segregating 
the deciduous (Alnus and Salix) and semi-deciduous (Rubus) species, 
from the evergreen Nerium with the highest toughness and low-
est nutrient concentrations. Tannins and lignin heavily loaded (0.67 
and 0.80, respectively) on positive PC 2, where Salix samples were 
clustered.

Overall, interspecific variation was higher than trait plasticity 
(Figure 5a). Rubus, the most widely distributed species, showed 
higher trait plasticity on PC 1, occupying 54% of this leaf quality gra-
dient while other species ranged between 23% and 38%. However, 
the two species with more restricted distribution, Alnus and Salix, 
showed the highest trait plasticity on PC 2, occupying 66% and 51% 
of this leaf quality gradient, respectively, compared to the more 
widely distributed Rubus and Nerium (both 40%) (Figure 5a).

Regarding individual traits, variance partitioning analyses in-
dicated, overall, higher interspecific variation than species plas-
ticity in leaf traits (Figure S3). The highest interspecific variation 
(>80%) occurred in traits considered major determinants of litter 
decomposability-palatability—toughness, lignin, N and C:N—as ex-
pected dealing with species across different plant functional types. 
However, trait plasticity was higher than interspecific variation for P, 
Ca, Mg and C:P (ranging between 55% and 71%) and noticeably high 
for tannins (Figure S3).

Trait plasticity was described by the first two principal compo-
nents of the PCA performed for each species (Figure 5b–e), which 
explained a considerable proportion of trait plasticity: ranging be-
tween 54% in Nerium and 73% in Alnus. The first principal compo-
nent (PC 1) represented for all species a gradient of increasing leaf 
quality (Figure 5b–e; Table S7) positively related with decompos-
ability and digestibility, owing to its high positive correlation with 
leaf N (0.57–0.87) or P (0.56–0.93) concentrations, but negative 
with tannins (−0.90–0.29), lignin (−0.73–0.08) or toughness (−0.82 
to −0.32). However, dimension PC 2 did not exhibit a common trend 
across species (Figure 5b–e; Table S7). For Alnus and Salix, PC 2 
was positively correlated with N, but negatively with tannins and 
Mg, respectively; this component covaried positively with Ca but 
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negatively with tannins in Nerium, and negatively with Ca, Mg, lignin 
and toughness in Rubus.

3.3  |  Relative importance of climate and 
soil factors, and best climatic predictors of leaf 
trait plasticity

Univariate dependent variable PLS models indicated that leaf trait 
plasticity (PC 1) of the four species responded significantly and pre-
dominantly to climatic variables (Table 2). Adding soil factors to cli-
mate increased noticeably the goodness of prediction in Nerium, but 
produced a highly complex model with six latent variables. Models 
predicting leaf trait plasticity associated to PC 2 were only signifi-
cant for Nerium and Salix, but especially for the latter, in which the 
set of soil variables significantly predicted a high proportion of vari-
ance of leaf trait plasticity, but the model including just the set of 
climate variables was still significant (Table 2).

Overall, climatic predictors with the highest influence (VIP close 
or >1) on leaf trait plasticity associated to PC 1 (Table 3) varied 
among species, although most notable differences arose between 
broad functional groups. Mean temperature of the wettest quarter 
(late winter-early spring) was an important predictor with nega-
tive effects on leaf quality for deciduous/semi-deciduous species. 
Conversely, maximum annual temperature was the main predictor 
with high positive effect on leaf quality for the evergreen Nerium. 
Temperature annual range was an important predictor of leaf quality 

(PC 1) for Nerium and Alnus, although with contrasting sign (negative 
and positive, respectively), highlighting the opposite response that 
species belonging to different plant functional types may have the 
same climatic variable. Moreover, precipitation variables (Table 3) 
did not have substantial effects on the evergreen Nerium, but were 
important predictors of leaf quality (PC 1) for deciduous/semi-
deciduous species, with notable positive effects on Salix and Rubus, 
but slightly negative on Alnus. Leaf quality of Salix associated to PC 
2 was primarily predicted by temperature annual range (positive 
effect) and winter temperature (negative effect), with precipitation 
variables (Table 3) being other important predictors with positive 
effects on leaf quality. Over this dimension, soil EC and P (with neg-
ative effects) and soil CaCO3 (with positive effects) were important 
predictors on leaf quality of Salix.

3.4  |  Forecasted intraspecific changes in leaf 
quality induced by climate change

Our modelling projections showed that the four plant species would 
respond differently to the forecasted scenario of aridification by 
the year 2100 (2 × CO2 climate change scenario) in the studied re-
gion, although with remarkable congruence within broad functional 
groups in terms of response direction (Figure 6; Figure S4). For Alnus 
and Salix (PC 1), we observed weak evidence of overall variation in 
leaf quality (t = 1.523, p = .154; t = −2.071, p = .065, respectively; 
Hedge's g = 0.232 and −0.295, respectively; Figure 6). Salix (PC 2; 

F I G U R E  3  Ordination of sampling sites for the first two CCA axes (90.87% of fitted constrained variance explained) based on the 
environmental variables. In a, vectors represent the weight of each environmental variable; open circles denote sampling sites; and squares 
show the mean weighted position of each plant species over the environmental gradient. In b–e, coloured circles and their sizes represent 
the sampling site where each plant species was present and the percentage of canopy cover in each site, respectively; black circles represent 
sampling sites where each corresponding species did not appear. Marginal density plots show distribution of data for parsimonious CCA 
values of each plant species
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Figure S4) and Rubus (PC 1; Figure 6) showed large (62% and 57% 
decrease in mean position, respectively) and significant depletion of 
their leaf quality (t = 2.423, p = .036; t = −8.277, p < .0001; respec-
tively), with large effect size (Hedge's g = 1.242 and 1.064, respec-
tively). Conversely, leaf quality of Nerium is projected to increase 
consistently and significantly (87% increase in PC 1; t =  −8.277, 
p < .0001, Hedge's g = −1.437) in the scenario of rising aridity used 
for our predictions.

4  |  DISCUSSION

Functional trait-based approaches are potentially useful to un-
derstand how species respond to environmental changes 
(Soudzilovskaia et al., 2013; Zhang et al., 2020) and, therefore, are 
important for an ecologically sensitive management of ecosystems. 
Here, we assessed how climate change might affect leaf quality of 

different riparian woody species from an intraspecific perspective, 
which has been much disregarded based on the general assumption 
that intraspecific variation accounts only for an irrelevant portion of 
total trait variability (Garnier et al., 2001). Overall, in support of our 
first hypothesis, but contrary to previous studies (Graça & Poquet, 
2014; Ordoñez et al., 2009), climate showed larger influence than 
soil explaining most leaf trait plasticity. Our second hypothesis of 
decreasing intraspecific leaf quality—linked to determinant traits of 
palatability and  decomposability—with increasing aridity was par-
tially supported, given that increasing temperature had negative ef-
fects on leaf quality of deciduous and semi-deciduous species, but 
not on the evergreen Nerium, which displayed the opposite response. 
These results suggest potential effects on stream ecosystem func-
tioning (Fenoy et al., 2021; Martínez et al., 2013), but with inverse 
sign depending on the identity of dominant species in the riparian 
vegetation. Moreover, in support of our third hypothesis, we gener-
ally observed higher variation among species than plasticity within 

F I G U R E  4  Box-and-whisker plots for selected leaf trait variables of the four plant species studied: nitrogen (N), phosphorus (P), calcium 
(Ca) and magnesium (Mg) concentrations (% DM), molar elemental ratios (C:N and C:P), lignin concentrations (% DM), condensed tannins 
concentrations (mg Catechin Hydrate Equivalent g DM−1) and toughness (g) of each plant species. Box represents median and 25th and 75th 
percentile levels, crosses are the mean, whiskers are the range, and dots are replicates. Different letters indicate significant differences 
(p < .05) among plant species, on the basis of linear models followed by pairwise multiple comparisons (Tukey test)
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species, except for a few traits (e.g. P, Ca and Mg concentrations and 
C:P ratio) that exhibited remarkable leaf trait plasticity (Albert et al., 
2010; Fajardo & Piper, 2011). Nonetheless, ranges of trait plasticity 
found here for some traits (e.g. %N, %P and %lignin) are similar, or 
higher, than those reported before for other species (e.g. Lecerf & 
Chauvet, 2008; LeRoy et al., 2007; Oliveira et al., 2021).

4.1  |  Relative influence of climate and soil factors

Over the environmental gradient studied, climate exhibited an over-
all higher influence than soil on most species’ leaf trait plasticity, 
although soil was the strongest predictor in some cases (e.g. Salix 
and Nerium PC 2). We presumed higher responsiveness of leaf traits 
to climate than soil in species with distributions highly constrained 
by soil conditions. This appears to be the case for the acidophilic 
Alnus (Miles, 1985), the species with the highest control of climate 
on its leaf trait plasticity. The fact that Alnus is an N-fixer may have 
further contributed to make this species less sensitive to soil nutri-
ents. However, other species with less restricted soil-related distri-
butions, such as Rubus—spread out across almost the entire study 
area—or Nerium, also showed a prominent role of climate influence 
on leaf trait plasticity. Similar patterns have been observed when as-
sessing the abundance of plant functional types in the same region 
and across environmental gradients (Salinas et al., 2018). This lower 
predictive role of soil variables may stem from the high dynamics 
of alluvial soils and their permanent water availability, which would 
tend to homogenize conditions—i.e. nutrient availability—among 
sites (Naiman & Decamps, 1997). Yet our results are counter to 

other findings recorded at much larger spatial scales that observed 
substantial importance of soil predictors explaining intraspecific 
changes in leaf traits (Graça & Poquet, 2014; Ordoñez et al., 2009). 
This suggests that other factors not considered here, such as the 
great topographic variability present in our spatial gradient, or geno-
type differences, might be overriding soil effects.

4.2  |  Main climatic predictors of leaf trait plasticity

Among climatic the factors, temperature exhibited much clearer pat-
terns than precipitation on the main dimension of leaf trait plasticity 
(PC 1). This is to be expected in riparian belts of permanent streams 
where soil moisture tends to be relatively high and constant in the 
absence of extreme drought events (Moore et al., 2016), preventing 
major water stress in plants and its consequences on leaf character-
istics (e.g. García-Palacios et al., 2016; LeRoy et al., 2014). However, 
climate-driven changes in streamflow may worsen the effects of 
aridification on such ecosystems (Perry et al., 2012).

Despite clear differentiation in distribution extent among species, 
we detected a common negative relationship between temperature 
and leaf quality in the deciduous and semi-deciduous species. On 
the contrary, this relationship was positive for the evergreen Nerium. 
Overall, nutrient concentrations (N, P, Ca and Mg) decreased, but 
tannin and/or lignin concentrations, and/or toughness increased 
with increasing temperature for deciduous/semi-deciduous species, 
whereas Nerium roughly exhibited the opposite pattern. Thus, within 
the frame of the leaf economic spectrum (Reich et al., 1997; Wright 
et al., 2004), the above seems to reveal antithetical syndromes of 

F I G U R E  5  Projection of the first two principal components of PCAs showing ordination of leaf samples of four species (circles) as 
a function of selected leaf traits (vectors). (a) interspecific variation (polygons of different colours) versus trait plasticity (circles in each 
polygon); (b–e) trait plasticity of each plant species separately: (b) Alnus glutinosa, (c) Salix atrocinerea, (d) Nerium oleander, (e) Rubus ulmifolius
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leaf traits between functional groups in response to temperature, in 
which the intraspecific intercorrelated leaf traits along our quality 
gradient represent physiological and structural trade-offs (Boyero 
et al., 2017; Onoda et al., 2017).

Decreasing leaf N and/or P concentrations with increasing tem-
perature has been reported before in woody deciduous species 
(Chen et al., 2011; Kudo et al., 2001; Sun et al., 2015). This may be 
explained by an increase of the catalytic capacity of photosynthetic 
enzymes at higher temperatures, requiring lower enzyme amounts 

(e.g. lower N concentration) to maintain photosynthetic rates (i.e. the 
photosynthetic rate is achieved with lower amounts of such enzyme; 
Scafaro et al., 2017). Alternatively, or additionally, higher tempera-
ture is often associated with increasing length of the growing sea-
son in deciduous species, which in turn promotes long leaf life span. 
Long-lived leaves often invest more in structure/protection at the 
expense of reducing photosynthetic efficiency (Kudo et al., 2001; 
Onoda et al., 2017). Similarly, other authors have reported that decid-
uous plants growing under relatively elevated temperatures develop 

F I G U R E  6  Boxplots showing (a) 
the aridity range covered by the 
distribution of each species according to 
the Emberger's bioclimatic coefficient 
(Q2); and (b) the leaf quality (PC1) of 
each plant species at present (Current) 
and in future climate change scenarios 
according to the NCAR Community 
Model version 3 (CCM3) for the year 
2100 (Projected). Note that leaf quality 
ranges (PCA dimensions) are scaled to unit 
for simplicity. Different letters indicate 
significant different based on t-test 
analyses
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tougher leaves (Wright et al., 2017) or leaves with higher tannin (Top 
et al., 2017) and lignin (Graça & Poquet, 2014) concentrations.

Reduction of nutrients and strengthening of leaf traits to confer 
resistance (e.g. increasing toughness) have been reported in ever-
green Quercus species in response to decreasing winter tempera-
tures. This is interpreted as a higher cost for evergreens at cooler 
sites compared with deciduous trees (González-Zurdo et al., 2016). 
However, this finding is not totally consistent with our results for 
Nerium as winter temperatures did not exhibit any effect on its leaf 
quality. We observed the strongest positive effect on leaf quality of 
Nerium from maximum temperature, but a more negative effect from 
annual temperature range. This suggests that Nerium develops more 
nutrient-rich and softer leaves in its optimum distributional range 
(areas with mild winters and maritime influence), with negligible ef-
fects from harsh low-winter temperatures, which are infrequent in 
its area of distribution. Nevertheless, we cannot rule out the pos-
sibility that our results are species-specific, and projection of such 
results to the entire functional group needs to be confirmed with the 
study of further evergreen species.

A substantial amount of leaf trait plasticity (25%) in Salix (PC 
2)—positively related to leaf N and lignin, and negatively to Mg 
concentrations—was significantly explained by climatic conditions, 
but much more by soil variables. The strong positive association of N 
and lignin on PC 2 suggest that this N fraction is structural, possibly 
lignin-bound N, therefore not readily available to decomposers and 
detritivores (Berendse et al., 1987). Thus, PC 2 represents a structural 
reinforcement of Salix leaves positively related with temperature 
annual range and negatively with winter temperature, but also, and 
mostly, negatively with soil P. A structural reinforcement of leaves (in-
creasing leaf mass per area and lignin concentration) with decreasing 
soil fertility has been documented elsewhere (e.g. Diehl et al., 2008).

The trait plasticity observed in this study can arise from re-
sponses to environmental conditions, but also from genetic vari-
ability. Genotypes, although largely influenced and selected by local 
environments, represent an important source of trait variability un-
accounted for here. Genetic variability has been exhibited to strongly 
influence litter quality and, consequently, associated ecosystem pro-
cesses (e.g. litter decomposition) and communities (Crutsinger et al., 
2014; LeRoy et al., 2006, 2007, 2012). Given that leaf traits differ in 
their heritability, for example, tannins appear to be highly heritable 
whereas C:N ratios are environmentally controlled (Crutsinger et al., 
2014), further research assessing how environment × genotype in-
teraction affects leaf traits is important for improving predictions of 
potential effects on ecosystem functioning, particularly, in the face 
of climate change.

4.3  |  Projecting climate change-driven 
variation of species leaf quality: implications for 
stream ecosystems

Litter trait variation across species constitutes the main driver 
of instream litter decomposition worldwide (Boyero et al., 2017; 

García-Palacios et al., 2016; Zhang et al., 2019), indicating an es-
sential role of plant phylogenetic history on controlling such pro-
cess (LeRoy et al., 2019). Although less studied, some evidence 
indicates that the control exerted by trait plasticity on litter de-
composition, nutrient cycling and trophic dynamics could be al-
most as important as interspecific changes (Jackrel & Morton, 
2018; Jackrel et al., 2016; Lecerf & Chauvet, 2008; LeRoy et al., 
2007; Oliveira et al., 2021). Here, we assessed the plasticity of 
selected traits of green leaves of riparian plants aimed at fore-
casting potential consequences of climate change on stream eco-
systems highly dependent on these resources (i.e. forest streams; 
Wallace et al., 2015). Although inputs of leaves to streams are 
mainly in the form of leaf litter, it has been reported that some 
traits of green leaves tend to persist after senescence and control 
rates of litter decomposition (Cornelissen et al., 1999; Cornwell 
et al., 2008). Therefore, if nutrient resorption efficiency remains 
fundamentally invariable across climatic conditions (Norby et al., 
2000, Aerts et al., 2007, but see Yuan & Chen, 2009b), under-
standing how green leaves respond to climate change may allow 
us to anticipate effects of leaf quality changes on stream ecosys-
tem functioning. In support of this idea, a recent study suggests 
that traits of green leaves can be used to accurately predict de-
composition rates (Rosenfield et al., 2020). However, as others 
have pointed out that traits of litter can differ from those of fresh 
leaves (Hättenschwiler et al., 2008; Hättenschwiler & Vitousek, 
2000; Horner et al., 1987; Yuan & Chen, 2009a), the potential ef-
fects on headwater stream functioning exposed here should be 
interpreted with caution.

Litter decomposition is often reported to be enhanced by its 
high N and P concentrations (García-Palacios, McKie, et al., 2016; 
MacKenzie et al., 2013). Elevated litter concentrations of Ca and 
Mg—reported to be important for fungal decomposers (Jenkins & 
Suberkropp, 1995) and macroinvertebrates (Makkonen et al., 2012; 
National Research Council, 2005)—can also accelerate decompo-
sition (Santonja et al., 2019). Moreover, tannins (Coq et al., 2010; 
Irons et al., 1988), lignin (Ferreira et al., 2016; Ramos et al., 2021; 
Schindler & Gessner, 2009) and toughness (Fenoy et al., 2021; Li 
et al., 2009) primarily tend to reduce litter consumption by detri-
tivores. Our results point to a general decrease in leaf quality as a 
response to aridification in the three deciduous/semi-deciduous 
species. This decrease was generally related to a reduction in leaf 
N and P, but also Ca and Mg, versus an increase in tannins or lignin, 
and leaf toughness.

In particular, changes in leaf quality of the deciduous N-fixer 
Alnus could have major consequences given the key role of this 
species on stream ecosystem processes (Alonso et al., 2021; Pérez, 
Basaguren, et al., 2021; Rubio-Ríos et al., 2021). We reported here 
for Alnus ranges of %N, %P and %lignin variation similar to those re-
ported at the European continental scale (Lecerf & Chauvet, 2008), 
and 53% of its species leaf trait plasticity was remarkably explained 
by climatic variables, yet our forecasted decrease in leaf quality was 
relatively low (11%) and not statistically significant, compared to 
other species. Nonetheless, apparent subtle changes in litter traits 



14  |    RUBIO-RÍOS et al.

might result in major effects in consumer fitness (Pérez et al., 2021). 
Furthermore, this projected minor decrease in leaf quality adds to 
the decline of populations of this key species through Europe due 
to a disease caused by the pathogen Phytophthora alni (Bjelke et al., 
2016), which also has been recently reported to alter the nutritional 
quality of leaf litter (Ferreira et al., 2021). Both factors are likely to 
trigger significant alterations to the functioning of forested streams 
(Alonso et al., 2021). Moreover, if a general decrease in leaf qual-
ity occurs in other deciduous species, as those forecasted here for 
Salix and Rubus, the negative influences on stream food webs will 
increase.

Thus, our results indicated that decreases of leaf quality of in-
dividual deciduous species may occur in a relatively short term (via 
phenotypic plasticity; Nicotra et al., 2010; but see Valladares et al., 
2007), which in the long term will add to the forecasted dieback of 
deciduous woody species in riparian corridors of temperate climate 
zones (Kominoski et al., 2013; Salinas et al., 2018). Both riparian 
changes have the potential to significantly impair instream ecosys-
tem processes, particularly in mountain streams presently dom-
inated by deciduous vegetation (Fenoy et al., 2021), more than in 
lowland streams where deciduous species actually represent a minor 
component of the riparian belt.
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